
ARTICLE IN PRESS
JOURNAL OF
SOUND AND
VIBRATION

Journal of Sound and Vibration 280 (2005) 925–943
0022-460X/$ -

doi:10.1016/j.

�Tel: +90-2
E-mail add
www.elsevier.com/locate/jsvi
Prediction of source characteristics of
engine exhaust manifolds

E. Dokumaci�

Department of Mechanical Engineering, Dokuz Eylul University, Bornova, Izmir, Turkey

Received 2 September 2003; accepted 22 December 2003

Available online 2 October 2004
Abstract

Engine exhaust noise source is often described in frequency domain by the impedance and strength of an
equivalent acoustic one-port source at a reference plane downstream of the exhaust manifold. These
parameters can be measured by experimental methods, however, it is also desirable to develop methods for
their prediction. A pre-requisite for the prediction of the equivalent one-port acoustic source parameters of
an engine manifold is a linear mathematical model of the breathing noise generation mechanism at the
valves. The present paper proposes new mathematical models for this source mechanism and the prediction
of the one-port source characteristics of engine exhaust noise. The analysis is based on basic fluid dynamic
equations for inviscid one-dimensional flow and encompasses both linear time-invariant, linear time-
variant and non-linear one-port source models. A systematic procedure is presented for the calculation of
one-port source characteristics of engine manifolds, with an application to a 4 cylinder engine exhaust
manifold.
The theory of the paper is applicable, with almost no modification, also to the prediction of one-port

source characteristics of engine intake noise and the pressure fluctuations associated with discharge and
suction processes in compressors.
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1. Introduction

Source characterization of engine exhaust noise, which is a task that is required to be
accomplished for making possible the prediction of radiated tailpipe noise or the insertion loss of
an exhaust muffler, is often based on the equivalent network approach, in which, in analogy with
linear four terminal electrical networks, the source is modelled as a one-port element. This enables
the exhaust noise source to be described in frequency domain by the impedance and strength of an
acoustic one-port source at a reference plane, usually called the source plane, which is typically
taken at downstream of the manifold or the converter. These parameters can be measured by
experimental methods such as the two-load method, however, it is also desirable to develop
methods for their prediction, but this is a more difficult problem, as it calls for a mathematical
model of the sound generation mechanism. To the author’s knowledge, no one has presented
until now an analytical one-port model for engine exhaust noise source characterization,
although, as can be expected, the number of publications on prediction of tailpipe noise radiation
has been rather extensive. However, most of this work is concerned with the numerical solution
of the nonlinear gas dynamics equations in time-domain for the whole or part of the exhaust
line and is outside the scope of the present study. The prediction of the source characteristics
of engine manifolds in the spirit of the equivalent linear network theory appears to have
received less attention. Åbom, et al. [1] have studied the possibility of prediction of the
source impedance of a 4-cylinder engine manifold by making numerical conjectures about the
values of terminal impedances at the valves. Desmons and Kergomard [2], have considered
the prediction of the tailpipe sound pressure level of a 4-cylinder engine by assuming the
source impedance at an exhaust valve is infinite and that the volume velocity injection at a
steady speed can be represented by a periodic rectangular pulse. In a study of the influence
of the manifold geometry on exhaust noise, Torregrosa et al. [3] have considered an exhaust
system consisting of a 4-cylinder engine manifold and a straight pipe by both linear and nonlinear
wave analysis, and in the linear formulation they also have assumed the source impedance to be
infinite at the exhaust valves. The theory that will be presented in the present paper aims to
improve this type of approach, by providing a mathematical model for the source characteristics
at the valves.
One-port acoustic source characterization is based on the Thévenin theorem on equivalent

linear networks, which is usually carried over to duct acoustics by assuming fundamental mode
propagation and the voltage–pressure and current–volume velocity analogy between the electrical
and acoustic variables. This assumes tacitly that the actual noise sources and the duct system that
transmits the noise generated, can be modelled as a two-terminal network of passive linear
elements and independent pure sources. The Thévenin theorem states that, any such two-terminal
network is equivalent to a voltage source in series with the network in which all sources are set to
zero; the voltage source having the instantaneous value of the voltage appearing at the open-
circuit terminals of the original network. The proof of this theorem (and its dual, the Norton
theorem) can be found in textbooks on linear networks. A direct application of the Thévenin
theorem to acoustic source characterization is thus confronted with the problem of finding the
acoustic counterparts of electrical concepts such as open-circuit voltage and setting sources to
zero. In particular, the latter is a challenging concept, as it apparently implies that the engine must
be switched off. No attempt is made in this paper to translate the Thévenin theorem into acoustic
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terms, rather, the equivalent acoustic one-port source concept follows naturally in the course of
the present analysis.
A pre-requisite for the prediction of the equivalent one-port acoustic source parameters of an

engine manifold is a mathematical model of the breathing noise generation mechanism at the
valves. The dominant exhaust noise generation mechanism is the blow-down pulse of burnt hot
gas mass. It is the main purpose of this paper to present a simple linear time-invariant one-port
model of this source mechanism and describe its use in acoustic source characterization of engine
exhaust manifolds, with an application to a four cylinder engine. The analysis, which is based on
the basic fluid dynamic equations for inviscid one-dimensional flow, also encompasses the
formulation of linear time-variant and nonlinear one-port source models.
2. Formulation of linear time-invariant one-port source for exhaust noise

2.1. General considerations

The exhaust valve–port model adopted in the present analysis consists of a uniform straight
pipe of cross-sectional area S. The valve and port diameters are assumed to be compact, and the
plane x=0� is assumed to represent the valve surface when the valve is at its closed position, or an
open end (that expands into the cylinder over the blockage of the valve) when the valve is open,
where x denotes the pipe axis and the subscript minus ‘�’ denotes just upstream of x ¼ 0: The
exhaust gas mass injection into the pipe is modelled as uniformly distributed external flow through
a circumferential area that extends down a very short length of the pipe at x ¼ 0; at the rate of
mðx; tÞ per unit volume of the pipe. The valve action and mðx; tÞ are assumed to be periodic in time,
t, of period T=1/FCF, where FCF denotes the firing cycle frequency, since a steady running
engine is considered. The fluid motion in this region of the pipe is governed by the equations of
conservation of mass, momentum and energy. Assuming one-dimensional flow, conservation of
mass requires that

qr
qt

þ
qrv

qx
¼ mðx; tÞ; ð1Þ

where r and v denote, respectively, the fluid density and the particle velocity in the x direction.
For inviscid flow that satisfies Eq. (1), the conservation equation for momentum in the x direction
can be expressed as

r
qv

qt
þ v

qv

qx

� �
þ

qp

qx
¼ 0; ð2Þ

where p denotes the fluid pressure. The energy equation is

qer
qt

þ
qvðp þ erÞ

qx
¼ h�mðx; tÞ: ð3Þ

Here, e denotes the total (internal plus kinetic) specific energy of the fluid in the pipe and ho

denotes the specific stagnation enthalpy of the exhaust gas mass injection into the pipe. Assuming



ARTICLE IN PRESS

E. Dokumaci / Journal of Sound and Vibration 280 (2005) 925–943928
that the exhaust gas behaves as a perfect gas and using Eqs. (2) and (3), Eq. (1) can be expressed as

qp

qt
þ v

qp

qx
þ gp

qv

qx
¼ ðg� 1Þðh� � v2=2Þmðx; tÞ: ð4Þ

Here, g is the ratio of specific heat coefficients. In deriving this equation, the temperature
dependence of the specific heat coefficients is neglected. This approximation is usually made, as it
gives results within engineering accuracy for practical exhaust gas conditions.
The exhaust gas mass injection into the port is assumed to be concentrated in the close vicinity

of x ¼ 0; and that it can be expressed as mðx; tÞ ¼ mðtÞdðxÞ=S; where dðxÞ denotes the Dirac
function at x ¼ 0 and mðtÞ is the rate of exhaust gas mass injection into the port. Hence, Eq. (4)
becomes

S
@p

@t
þ v

@p

@x
þ gp

@v

@x

� �
¼ ðg� 1Þmfh� � v2=2gdðxÞ; ð5Þ

and, recasting Eq. (2) using the relationship c2 ¼ gp=r; where c is the speed of sound, one obtains
the second equation that governs the fluid pressure and particle velocity:

gp
qv

qt
þ v

qv

qx

� �
þ c2

qp

qx
¼ 0: ð6Þ

In the foregoing equations, ho and m are required as input quantities. For the valve flow, it is usual
to assume that the stagnation enthalpy is conserved. Then, ho may be taken as the specific
stagnation enthalpy of the gas in the cylinder and, since the kinetic energy of the gas in the
cylinder is in general small compared to its total energy, it can be approximated by the specific
enthalpy of the gas in the cylinder, hðtÞ; say. Strictly speaking, both m and ho are influenced by the
wave motion in the exhaust line, however, as a first approximation, this effect can be neglected if
the wave amplitudes are in the linear range. To this approximation, m and h can be determined by
thermodynamic cycle simulation using the time-averaged operational conditions at exhaust ports,
without paying attention to the gas dynamics of the exhaust line. At this point, it is noteworthy
that, since the exhaust conditions at the ports are in general load-dependent, m and h, and,
therefore, the source characteristics, will be load-dependent.
These considerations require slight modification if there is back-flow at an exhaust port: For

exhaust gas back-flow, m represents the rate of mass injection into the cylinder and, consequently,
ho should be evaluated as the specific stagnation enthalpy of the exhaust gas inflow into the
cylinder. The latter can be approximated by the specific enthalpy of the gas in the exhaust port,
again on grounds of having negligibly small kinetic energy component. Thus, for a period
corresponding to a back-flow, h denotes the specific enthalpy of the gas in the exhaust port.
Upon integrating Eqs. (5) and (6) across the region x ¼ 0; one obtains, respectively,

Sfov4½p
 þ ghpi½v
g ¼ ðg� 1Þmfh � hv2=2ig; ð7Þ

ghpi½v2=2
 þ c20½p
 ¼ 0: ð8Þ

Here, the Heaviside function H1=2ðxÞ; where H1=2ðxo0Þ ¼ 0; H1=2ð0Þ ¼ 1=2; H1=2ðx40Þ ¼ 1; is
used in defining the jumps across the source plane, c20 ¼ c20ðtÞ denotes the speed of sound squared
in the region x ¼ 0 and the brackets h i and [ ] are used exclusively to denote the mean values and
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jumps across the source discontinuity plane, e.g.

hpi ¼ ðpþ þ p�Þ=2; ½p
 ¼ pþ � p�;

hvi ¼ ðvþ þ v�Þ=2; ½v
 ¼ vþ � v�; ð9Þ

where the subscripts minus ‘�’ and plus ‘+’, respectively, refer to just upstream and just
downstream of x ¼ 0: The fluid pressure and the particle velocity can be expressed as

pðt;xÞ ¼ �p þ p0ðt; xÞ; vðt;xÞ ¼ �v þ v0ðt;xÞ: ð10Þ

Here, over bar denotes a time-averaged mean part and prime denotes fluctuations having zero
time average (this notation is used similarly for the other fluctuating quantities as well). The
fluctuating parts p0 and v0 are assumed to be due to acoustic wave motion that is generated by
periodic exhaust gas mass injection into the port. The equations governing the jumps in p0 and v0

across the region x ¼ 0 can be expressed as

Sfh�vi½p0
 þ hv0i½ �p
 þ ghp0i½�v
 þ gh �pi½v0
g

¼ ðg� 1ÞfðmhÞ0 � �mh�vv0i � m0h�v2=2i � ðm0h�vv0iÞ0Þg � �01; ð11Þ

gh �pi½ �vv0
 þ g½�v2=2
hp0i þ c20½p
0
 þ ðc20Þ

0
½ �p
 þ ððc20Þ

0
½p0
Þ0 ¼ ��02; ð12Þ

where the nonlinear terms are given by

�01 ¼ ðg� 1Þmhv
02=2i þ Sfhv0i½p0
 þ ghp0i½v0
g; ð13Þ

�02 ¼ gfh �pi½v
02=2
 þ hp0i½�vv0 þ v

02=2
g: ð14Þ

Eqs. (11) and (12), which follow upon application of the decompositions of Eq. (10) to Eqs. (7)
and (8) and assuming that the mean quantities satisfy these equations identically, constitute the
basic equations from which acoustic one-port source models are derived in the present analysis. In
implementing these equations, it is further assumed that the mean pressure in the vicinity of the
discontinuity plane is constant, po, say, and that the mean flow just upstream of this plane is zero;
that is,

½ �p
 ¼ 0; h �pi ¼ po; ½�v
 ¼ vo; h�vi ¼ vo=2; ð15Þ

where vo denotes the mean flow velocity just downstream of the source discontinuity plane. In this
model, no axial flow upstream of the source discontinuity, except that associated with the wave
motion, is assumed to be present to any discernible extent. Hence, Eqs. (11) and (12) can be
expressed as

Sfvo½p
0
=2þ gvohp

0i þ gpo½v
0
g

¼ ðg� 1ÞfðmhÞ0 � �mvov0þ=2� v2om0=4� voðm
0v0þÞ

0=2g � �01; ð16Þ

gpovov0þ þ ghp0iv2o=2þ c2o½p
0
 þ ððc2oÞ

0
½p0
Þ

0
¼ ��02; ð17Þ

respectively. Temporal variation of the speed of sound squared is caused by the temperature
fluctuation associated with the generated wave motion, as well as the temporal variation of the
port ambient temperature. The present analysis assumes that the effect of the former is negligible
and, therefore, c20ðtÞ is determined solely by the port ambient temperature.
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2.2. Linear time-invariant one-port source model

A linear one-port source model for engine exhaust noise can be developed by neglecting the
nonlinear terms in the foregoing jump equations. The resulting model is time-variant because of
the terms involving products of fluctuations in Eqs. (16) and (17). The formulation of linear one-
port source models in which these terms are considered will be taken up in Section 4. The present
section will develop a time-invariant one-port source model for exhaust noise.
Upon eliminating the time-variant and nonlinear terms, Eqs. (16) and (17) simplify to

Sfvo½p
0
=2þ gvohp

0i þ gpo½v
0
g ¼ ðg� 1ÞfðmhÞ0 � ð �mvov0þ þ m0v2o=2Þ=2g; ð18Þ

gpovov0þ þ ghp0iv2o=2þ c2o½p
0
 ¼ 0; ð19Þ

respectively. It should be noted that, since these equations are linear in the fluctuating parts, the
primed quantities can be interpreted as the complex Fourier coefficients of the constituent
harmonics.
Upon defining the upstream acoustic impedance as z� ¼ p0�=v0�; Eqs. (18) and (19) can be

combined in the form of a Thévenin type equivalent one-port source

pS ¼ ZSv0þ þ p0
þ; ð20Þ

where

pS ¼
1

b
2ðmhÞ0

Svo

�
m0vo

2S

� �
; ð21Þ

ZS ¼
1

b
2gpo

voðg� 1Þ
þ

�m

S
þ 4aSgpovo

� �
; ð22Þ

a ¼
1� 2gpo=ðg� 1Þz�vo

4c2o � gv2o
; ð23Þ

b ¼
gþ 1
g� 1

þ ð4c2o þ gv2oÞa: ð24Þ

The parameters pS and ZS are called the source pressure strength and the source impedance,
respectively. Note that, these parameters, and the upstream acoustic impedance, are evaluated on
per harmonic basis. It is also notable that, the source impedance is determined by the mean
operating conditions of an engine.
For most engines, the port Mach number, Mo, which is defined by Mo ¼ vo=�co; where

�co ¼

ffiffiffiffi
c2o

q
; is less than 0.3 and, therefore, the condition M2

o � 1 may be assumed to be valid with

less than 10% error. For such low-port Mach numbers, upon applying the approximation1 �m �
1Just downstream of the discontinuity, the fluid density can be partitioned into acoustic and non-acoustic parts. The

approximation here entails the assumption that �m � �rovoS; where the time-averaged non-acosutic density is determined
by �ro ¼ gpo=c2o:
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SgM2
opo=vo; Eqs. (21) and (22) can be expressed approximately as

pS �
1

Svo

1�
po

voz�

� ��1 g� 1
g

½ðmhÞ0 � v2om0=4
; ð25Þ

ZS �
po

vo

1�
po

voz�

� ��1

1�
gM2

opo

voz�

� �
ð26Þ

respectively. From Eq. (26), it follows that, if the upstream acoustic impedance is large enough for
the condition z�4po=vo to be satisfied, then the source impedance is

ZS �
po

vo

1�
po

voz�

� ��1

; ð27Þ

and, if the condition z� � po=vo is satisfied, it is simply

ZS �
po

vo

; ð28Þ

approximately. This result can be expressed also as BS � 1=gMo: Here, BS denotes the normalized
source impedance, which is defined by BS ¼ ZS=zo; where zo ¼ gpo=�co: Thus, according to the
present source model, the normalized source impedance is inversely proportional to the port
Mach number.
Eq. (25) can also be simplified further for low-port Mach numbers:

pS �
g� 1
g

ðmhÞ0

Svo

1�
po

voz�

� ��1

; ð29Þ

since, for a perfect gas, ðmhÞ0 ¼ ðmc2o=ðg� 1ÞÞ
0
ffi m0 �c2o=ðg� 1Þ; and, consequently, v2om0=4 �

M2
oðg� 1ÞðmhÞ0=4� ðmhÞ0; the condition M2

o � 1 being applicable. Furthermore, if the condition
z� � po=vo is true, the source pressure strength is given by

pS �
g� 1
g

ðmhÞ0

Svo

; ð30Þ

approximately. This result shows that, when the upstream acoustic impedance is large enough, the
source strength is proportional to the fluctuations of the stagnation enthalpy (recall that ho has
been approximated by h), and is inversely proportional to the port Mach number.
Implementation of the foregoing results requires knowledge of the upstream acoustic

impedance z�. During the period in which a valve is closed, the valve surface determines the
boundary condition. On the other hand, as a first approximation, the acoustic conditions at
upstream of the discontinuity may be assumed to be approximately akin to that imposed by the
valve surface also during the period when a valve is open, since the maximum valve displacements
are in general very small compared to the wavelengths at the frequencies of interest. Obviously, if
the valve surface is modelled as a hard surface of infinite impedance, Eqs. (21) and (22) will reduce
to equations (30) and (28), respectively, for the case of M2

o � 1: Therefore, for low-port Mach
numbers, the condition z� � po=vo can be stated to be the criterion for the upstream acoustic
impedance to be considered infinitely large. This condition is assumed to be valid in the rest of the
present analysis, for simplicity.
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Typical mh injection from a 4-stroke spark-ignition engine cylinder is shown in Fig. 1. This
characteristic was determined by thermodynamic cycle simulation of an engine having 0.1m
stroke, 0.1m bore and a compression ratio of 8, running at a steady crank-shaft speed of 3000 rev/
min, being fuelled with C4H10 at equivalence ratio of unity and about 4% burnt gas content.
Exhaust valve opening and closing angles were, respectively, 1451 and 3751 after the top dead
centre. The Fourier magnitude spectrum of the mh time-history of Fig. 1 is given in Fig. 2 for the
first 50 harmonics of the firing cycle frequency (FCF).
Eqs. (28) and (30) delineate the analytical time-invariant one-port source model that is

presented in this section for the prediction of acoustic source impedance and strength at an
exhaust valve. In previous work, the values used for these parameters were based on presumptions
which, as it now transpires, are not completely consistent with the present theory. The source of
engine exhaust noise is often conjectured to be a pure volume velocity, or mass velocity, source
with infinite impedance. To the approximations underlying Eqn. (26), the source impedance can
be infinite if z� ¼ po=vo or if vo=0, but these cases, for which the source pressure strength also
becomes infinitely large, are not feasible physically for a steady running engine exhaust. Thus, it is
clear that, infinite source impedance is not allowed in the present theory. Conversely, using a finite
value for the source impedance at the exhaust ports when the mean flow velocity is assumed to be
zero, is not consistent with the present theory. On the other hand, according to the present theory,
Fig. 1. Exhaust gas mðtÞhðtÞ injection from a cylinder of a 4-stroke spark-ignition engine.
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Fig. 2. Fourier spectrum of the mðtÞhðtÞ injection of Fig. 1.
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the source strength is governed by the fluctuating stagnation enthalpy, and not by the fluctuating
mass velocity alone.2
3. Equivalent source characterization of engine manifolds

One-port source characterization of engine exhaust noise is usually required for the calculation
of radiated tailpipe sound pressure level, or the insertion loss of a muffler. Assuming that the one-
port source characteristics pS and ZS at the valves are determined, the first step of typical
calculations is the determination of the acoustic impedance at a reference plane downstream of the
manifold, as seen from the tailpipe end. This step comprises the usual duct acoustics wave transfer
calculations. In the second step of the computations, the one-port sources at the valves are
assumed to be linear and all ‘moved’ to the reference plane to obtain an equivalent one-port
source of the manifold at that plane. Then, the sound pressure level at the reference plane and,
hence, at any other plane downstream of the manifold, can be computed using the parameters of
the equivalent one-port source computed in the second step and the acoustic impedance computed
in the first step. Described in this section are the basic calculations involved in the second step.
This type of calculations are described also in Refs. [2,3,5], however, the present formulation takes
into account the time variance of the source (see Section 4.2) and the mean flow and temperature
effects.
For source characterization, it is usually satisfactory to model engine manifolds as an assembly

of pipes forming a ‘tree’ structure. The ‘tree’ is formed by a repeating pattern of a number of pipes
carrying joining flows connecting at junctions with a single outlet pipe, the exhaust pipe
constituting the final outlet pipe. The reference plane for equivalent source calculations is usually
taken at the inlet of the exhaust pipe, or at the outlet of the converter, if there is one. The object of
the calculations is to determine the source strength and impedance of the acoustic one-port
source, imagined to be located at the selected reference plane, that produces the same acoustic
field downstream of the reference plane as the actual sources at the exhaust valves. This can be
achieved by repeated application of elementary operations of transferring one-port sources along
pipes and across a junction. These operations are described separately in the following sections.
The analysis assumes, for simplicity of the presentation, isentropic sound wave propagation and
neglects the effects local temporal variations in the ambient temperature.

3.1. Moving one-port sources along pipes

Let plane 1 be the original source plane, and plane 2 the plane at which the equivalent one-port
source characteristics are required. In Thévenin form, the source relationships in planes 1 and 2
can be expressed as

pS1 ¼ ZS1v
0
1 þ p0

1; pS2 ¼ ZS2v
0
2 þ p0

2; ð31Þ
2Here, it may be of interest to note the contention of Doak [4] on the fluctuating stagnation enthalpy being the basic

acoustic field. The present analysis captures the effect of stagnation enthalpy fluctuation on the source strength. As can

be deduced from Eq. (25), if the specific enthalpy fluctuation is negligible, then the source strength is governed by the

mass velocity fluctuation.
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where the subscripts ‘1’ and ‘2’ refer to plane 1 and plane 2, respectively. Since time-invariant one-
dimensional wave motion is assumed, the transfer of acoustic motion between the planes 1 and 2
can be expressed in frequency domain by the two-port relationship

p01

v01

� �
¼

A B

C D

� �
p02

v02

� �
: ð32Þ

Eqs. (31) and (32) can now be manipulated to show that

pS2 ¼
pS1

A þ ZS1C
; ZS2 ¼

B þ ZS1D

A þ ZS1C
: ð33Þ

These relations, which define the equivalent one-port source at plane 2, in terms of the parameters
of a known one-port source at plane 1, are general as no conjecture has been made about the form
of Eq. (32). For the simplest case, the two-port for isentropic propagation in a pipe carrying a
uniform mean flow can be used, however, it is also possible to use two-ports that take into account
the effects ambient temperature gradients, visco-thermal losses, or even components such as a
converter or muffler.
For isentropic sound propagation in a uniform pipe having axially uniform speed of sound c0

and carrying a uniform mean flow of Mach number M0, Eq. (33) can be expressed as (harmonic
wave motion of radian frequency o and exp(�iot) time dependence being assumed)

pS2 ¼
2pS1e

iKþL

BS1 þ 1� ðBS1 � 1ÞeiK
þLe�iK

�L
; ð34Þ

BS2 ¼
BS1 þ 1þ ðBS1 � 1Þe

iKþLe�iK
�L

BS1 þ 1� ðBS1 � 1ÞeiK
þLe�iK

�L
; ð35Þ

where i denotes the unit imaginary number, L is the length of the pipe between the planes 1 and 2,
and

K� ¼
�o

coð1� MoÞ
ð36Þ

Strictly speaking, these expression are valid for a pipe having a constant mean temperature along
its length, however, they can be used effectively when there exists an appreciable axial mean
temperature gradient, by dividing the pipe into a number of segments with constant temperatures
so that the actual temperature gradient is approximated in a step-wise manner. If the mean
temperature gradient is constant along the pipe, Eqs. (34) and (35) can be used with good
accuracy without segmentation, provided that K7L is replaced by K7Lb7, where b� ¼

1þ tð1� 2MoÞ=4ð1� MoÞ; t is the ratio mean temperature drop between planes 1 and 2 to the
mean temperature at plane 1, and both here and in Eq. (36),Mo now denotes the Mach number of
the mean flow velocity at plane 1 [6].

3.2. Moving one-port sources at a junction

A junction is modelled as a compact region, the input planes of which have known one-port
sources, and the single output plane is the reference plane of the equivalent source. Let plane 1 be
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the output plane, and planes 2,3,y the input planes. In Thévenin form, the source relationships in
these planes are

pSi ¼ ZSiv
0
i þ p0

i; i ¼ 2; 3; . . . ð37Þ

Assuming quasi-static conditions in the junction, and that the wave motion is isentropic, the
conservation of mass fluctuations gives

ðzo1v
0
1 þ Mo1p

0
1Þs1 ¼

X
i¼2;3;...

ðzoiv
0
i þ Moip

0
iÞsi: ð38Þ

Here, Moi denotes the mean flow Mach number at plane i, si ¼ Si=coi; where Si denotes the cross-
sectional area of the pipe connecting at plane i, and zoi and coi denote, respectively, the
characteristic acoustic impedance and the speed of sound at plane i. Neglecting losses, the
corresponding energy equation can be expressed as the equality of the fluctuating part of the
stagnation enthalpy at all planes

ðp01 þ zo1Mo1v
0
1Þ=ro1 ¼ ðp0i þ zoiMoiv

0
iÞ=roi; i ¼ 2; 3; . . . ; ð39Þ

where roi=zoi/coi. Solving Eqs. (38) and (39) for the equivalent source at plane 1 gives

pS1 ¼

P
i¼2;3;:::

ðai þ MoiÞsipSi

Mo1s1ro1 þ
P

i¼2;3;...
aisiroi

8><
>:

9>=
>;ro1; ð40Þ

ZS1 ¼

s1ro1 þ Mo1

P
i¼2;3;...

aisiroi

Mo1s1ro1 þ
P

i¼2;3;...
aisiroi

8><
>:

9>=
>;zo1: ð41Þ

Here,

ai ¼
zoi � MoiZSi

ZSi � zoiMoi

; i ¼ 2; 3; . . . : ð42Þ

Thus, given the one-port source parameters at the input planes of a junction, the equivalent source
at its output plane can be determined by using the foregoing equations.

3.3. Source parameters of engine manifolds

The calculation of the equivalent one-port source parameters of an engine manifold starts from
the ports. Having determined the one-port source characteristics at the valves using Eqs. (28) and
(30), these are moved to the input planes of the first set of junctions. Next, the sources at the input
planes of these junctions are transferred to their respective output planes. Repeating this process
up to the reference plane gives the equivalent source characteristics at that plane. These
calculations using the present source theory are implemented in ADEM, a software that has been
developed by the author for acoustic analysis of mufflers and flow ducts.
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Fig. 6. A typical 4-cylinder spark-ignition engine exhaust manifold configuration.
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Shown in Figs. 3–5 are the source characteristics of a typical four cylinder engine manifold that
have been calculated by this process. Eqs. (28) and (30) were used in modelling the source
characteristics at the valves and cylinder (mh)0 injections were assumed to be as in Fig. 2, with the
phasing of the Fourier spectra according to the firing order, which is assumed to be 3-2-4-1 (see
Fig. 6), taken into account. The port Mach numbers, and time-averaged port temperatures were
0.1 and 850 1C, respectively. For the fuel used in the cycle simulation, this corresponds to a speed
of sound of about 650m/s, a ratio of specific heat coefficients of 1.286, which is assumed to be
constant throughout the manifold and, from Eq. (28), a port normalized source impedance of
7.776, approximately.
Shown in Fig. 6 are the geometry of this manifold, which is taken from Ref. [1], and the position

of the reference plane. The equivalent one-port source impedance of the manifold has the real and
imaginary parts shown in Figs. 4 and 5, respectively, and the pressure strength magnitude
spectrum shown in Fig. 3. The dominant harmonics of the latter correspond to the first
few multiples of the fundamental firing frequency, which is equal to 4 times the FCF. In Ref. [1],
the source impedance of this manifold was calculated by making conjectures about the values of
the terminal impedance at the exhaust valves. The characteristics of Figs. 4 and 5 are in fairly
good agreement with the results of Ref. [1] for normalized terminal impedance of 10 at the four
valves.
4. Advanced one-port source models for exhaust noise

This section will present one-port source models for exhaust noise generation, which capture
the typical effects of linear time-variant and nonlinear terms in Eqs. (16) and (17). For simplicity,
these models are built over the linear time-invariant model described by Eqs. (28) and (30).
Therefore, it is expedient to give first the forms of Eqs. (16) and (17) from which this simple time-
invariant model can be deduced directly. These are

Sfvo½p
0
=2þ gvohp

0i þ gpov0þg ¼ ðg� 1ÞðmhÞ0; ð43Þ

gpovov0þ þ c2o½p
0
 ¼ 0: ð44Þ
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Indeed, elimination of p0� gives

g� 1
g

ðmhÞ0

Svo

¼
po

vo

1þ 1
2
ðg� 1ÞM2

o

� �
v0þ þ p0

þ �
po

vo

v0þ þ p0; ð45Þ

since the condition M2
o � 1 is applicable. This shows that Eqs. (43) and (44), which are

subsequently referred to as the basic time-invariant model, yield the Thévenin form of the time-
invariant one-port source relationship that correspond to Eqs. (28) and (30). The remaining linear
terms in Eqs. (18) and (19) are neglected in building the linear time-variant and non-linear
extensions of the basic time-invariant one-port source model.
4.1. A time-variant one-port source model

To show the effect of the linear time-variant terms, the following extension of the basic time-
invariant model is considered:

Sfvo½p
0
=2þ gvohp

0i þ gpov0þg ¼ ðg� 1ÞfðmhÞ0 þ voðm
0v0þÞ

0=2g; ð46Þ

Sfgpovov0þ þ c2o½p
0
 þ ððc2oÞ

0
½p0
Þ

0
g ¼ 0; ð47Þ

This includes all linear time-variant terms.
For a steady running engine, the fluctuating terms in Eqs. (46) and (47) will be periodic and can

be represented by their complex Fourier series

fp0þ; p
0
�; v

0
þ; ðc

2
oÞ

0; ðmhÞ0;m0g ¼
X1
k¼�1

ka0

fpk; qk; vk; ck; hk;mkg expði2pkt=TÞ: ð48Þ

Upon substituting these series in Eqs. (46) and (47) and equating the coefficients of the harmonics
of the like order, one obtains

S
gþ 1
g� 1

pk þ qk þ
2gpovk

vo

� �
¼
2hk

vo

þ
X1

n¼1
nak

vnmk�n þ
X1
n¼1

v�nmkþn; ð49Þ

gpovovk þ c2oðpk � qkÞ þ
X1

n¼1
nak

ðpn � qnÞck�n þ
X1
n¼1

ðp�
n � q�nÞckþn ¼ 0; ð50Þ

where k=1,2,y, an asterisk (*) denotes the conjugate of a complex quantity and the summations
are the convolution summations that represent the linear time-variant terms.
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Eqs. (49) and (50) are manipulated more easily using matrix algebra. To this end, it is
convenient to define the following vectors:

P ¼

p1

p2

..

.

pK

p�1

p�2

..

.

p�K

2
66666666666666664

3
77777777777777775

; Q ¼

q1

q2

..

.

qK

q�
1

q�
2

..

.

q�
K

2
66666666666666664

3
77777777777777775

; V ¼

v1

v2

..

.

vK

v�1

v�2

..

.

v�K

2
6666666666666664

3
7777777777777775

; h ¼

h1

h2

..

.

hK

h�
1

h�
2

..

.

h�
K

2
6666666666666664

3
7777777777777775

; ð51Þ

Then, writing Eq. (49) for k=1,2,y,K, truncating the convolution summations at K terms, and
combining the resulting set of equations with the complex conjugate of the same set of equations,
one obtains

S
gþ 1
g� 1

PþQ

� �
þ

2Sgpo

ðg� 1Þvo

E�M

� �
V ¼

2

vo

h: ð52Þ

Here, E denotes a real unit matrix of dimension 2K and

M ¼
M1 M2

M�
2 M�

1

� �
; ð53Þ

where

M1 ¼

0 m1�2 � � � m1�K

m2�1 0 � � � m2�K

..

. ..
.

� � � ..
.

mK�1 mK�2 � � � 0

2
66664

3
77775; M2 ¼

m1þ1 m1þ2 � � � m1þK

m2þ1 m2þ2 � � � m2þK

..

. ..
.

� � � ..
.

mKþ1 mKþ2 � � � mKþK

2
66664

3
77775 ð54Þ

Similarly, writing Eq. (50) for k ¼ 1; 2; . . . ;K ; truncating the convolution summations at K terms,
and combining the resulting set of equations with the complex conjugate of the same set of
equations,

gpovoVþ fc2oEþ CgP ¼ fc2oEþ CgQ; ð55Þ
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where matrix C has the same form as matrix M, but with the terms mk replaced by ck: Upon
elimination of vector Q from Eqs. (52) and (55), one obtains the one-port source equation

PS ¼ ZSVþ P; ð56Þ

where the source impedance matrix, ZS; and the source pressure strength vector, PS; are given by

PS ¼
g� 1
gSvo

h; ð57Þ

ZS ¼
po

vo

E�
g� 1
2gS

M: ð58Þ

Thus, the time-variant one-port source is described by Eq. (56). This model embodies a number of
interesting features. Firstly, it is seen that the source pressure strength of this model is the same as
that of the basic time-invariant model; that is, time-variance has no effect on the source pressure
strength. Secondly, time-variance modifies the concept of source impedance to that of source
impedance matrix, ZS: If the source impedance matrix is to be computed to the accuracy of K

harmonics of FCF, the Fourier spectrum of mðtÞ must be available to the accuracy of 2K
harmonics, and some elements of the real part of ZS may be negative. Finally, and peculiarly, the
time-variance of the source impedance matrix is determined by the time-variance of exhaust gas
mass injection, and the time-variance of the speed of sound squared at an exhaust port, that is,
matrix C, has no effect.
For the engine cylinder having the exhaust gas mass injection of Fig. 1, the contribution of the

time-variant term to the source impedance matrix is almost indiscernible. The order of magnitude
of this term may not be as small as this for all engines, but, it is clear that, it can, in general, be
neglected as a first approximation for most engines.

4.2. Moving time-variant one-port sources along a manifold

If the sound wave propagation is assumed to be time-invariant, the time-variant one-port
sources can be moved along the pipes and junctions of a manifold as described in Section 3. The
same equations will be valid for every harmonic of the FCF, but now these equations must be
expressed collectively for the harmonics considered in the source spectrum so as to conform with
the time-variant one-port source equation, Eq. (56). Hence, it can be shown that, the working
equations for moving a time-variant one-port source along an isentropic uniform pipe carrying a
uniform mean flow can be expressed as

PS2 ¼ 2ðE�GÞ
�1Tþð1S1 þ EÞ�1PS1; ð59Þ

1S2 ¼ ðEþGÞðE�GÞ
�1; ð60Þ

which are the counterparts of Eqs. (34) and (35), respectively. Here, 1Si (=ZSi/zoi) denotes the
normalized source impedance matrix of time-variant source at plane i, and matrix G is given by

G ¼ Tþð1S1 þ EÞ�1ð1S1 � EÞT��; ð61Þ
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where T7 denotes the diagonal matrix

T� ¼ exp iK�
1 L iK�

2 L . . . iK�
K L � iK�

1 L � iK�
2 L . . .� iK�

KL
� �

ð62Þ

and K�
k is given by Eq. (36) with o=2pk(FCF), k=1,2,y,K.

Similarly, the working equations for moving time-variant one-port sources across a junction
can be shown to be

PS1 ¼ ro1 Mo1s1ro1Eþ
X

i¼2;3;...

aisiroi

 !�1 X
i¼2;3;...

ðai þ MoiEÞsiPSi; ð63Þ

ZS1 ¼ zo1 Mo1s1ro1Eþ
X

i¼2;3;:::

aisiroi

 !�1

s1ro1E þ Mo1

X
i¼2;3;:::

aisiroi

 !
; ð64Þ

where

ai ¼ ðzoiE� MoiZSiÞðZSi � zoiMoiEÞ
�1: ð65Þ

Clearly, Eqs. (63) and (64) are the counterparts of Eqs. (40) and (41), respectively.
The foregoing equations have been applied to compute the equivalent source characteristics of

the manifold shown in Fig. 6, however, this part of the results is not reproduced here, because, as
can be expected from the above discussed relative order of magnitudes of the terms of the source
impedance matrix, no deviation worthy of reporting exists from the time-invariant source
characteristics shown in Figs. 3–5.

4.3. A nonlinear one-port source model

The nonlinear one-port source model that will be presented in this section follows from the
basic time-invariant model by addition of the non-linear term in Eq. (17) to Eq. (44). The
nonlinear term in Eq. (16) is not taken into account on the grounds that it will in general be small
compared to the total enthalpy fluctuations at the ports. Thus, the equations governing the
present nonlinear one-port source model of exhaust noise generation are

Sfvo½p
0
=2þ gvohp

0i þ gpov0þg ¼ ðg� 1ÞðmhÞ0; ð66Þ

gpovov0þ þ c2o½p
0
 ¼ �gfpo½v

02=2
 þ p0
� �

vov0þg; ð67Þ

where the third-order nonlinear term in �02 has been neglected. Upon elimination of p0
�; these

equations can be written in the form

po

vo

1� 1
4
ðg� 1ÞMo

v0þ

�co

� �� �
v0þ

� �0
þ 1� 1

2
Mo

v0þ

�co

� �
p0
þ

� �� �0

¼
g� 1
Svog

ðmhÞ0 1� 1
2
gMo

v0þ

�co

� �� �� �0
: ð68Þ

This result reveals that the effect of nonlinearity can be neglected as long as the Mach number
of the particle velocity amplitude remains of the same order as the Mach number of the mean flow
velocity at the exhaust port (the condition M2

o � 1 being assumed to be applicable). Thus,
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according to the present theory, the critical parameter for marked nonlinear effects on exhaust
noise generation, is the amplitude of the particle velocity generated at the ports, and not the
pressure amplitudes. It is not the purpose of the present paper to dwell on the use of Eq. (68) for
developing a nonlinear model of an engine exhaust manifold source. In fact, it appears that it
would be difficult to implement Eq. (68) in any practically useful manner. Indeed, if nonlinearity is
important at the ports, its effects should also be prevalent in the manifold pipes and junctions,
which means that the acoustic modelling of the manifold should also take the nonlinear effects
into account. This is a task of almost similar complexity as solving the nonlinear gas dynamic
equations, however, since the Mach number of the particle velocity amplitude at the exhaust ports
is not likely to exceed that of the mean flow velocity in most engines, the undertaking of such a
task should not be warranted in many cases.
5. Conclusion

A new mathematical model has been presented for the exhaust noise generation mechanism in a
steady running engine. This model assumes that the gas injection at an exhaust valve is
concentrated in a discontinuity plane and generates plane wave motion and uniform mean flow
downstream of this plane. It has been shown that the acoustic impedance upstream of the
discontinuity plane can be assumed to be infinitely large during the cycle if it is much larger than
po/vo. The exact boundary condition is difficult to specify with certainty due to the time-variance
of the valve-lift, however, the assumption that this infinite impedance condition is satisfied in
practice is not expected to incur substantial modelling inaccuracy at the frequencies of interest, as
the valve-lift is usually small.
Linear time-invariant, linear time-variant and nonlinear models have been presented for one-

port source characterization of engine exhaust noise generation mechanism. The impedance and
strength of the linear time-invariant model have terms that are inversely proportional to the Mach
number of the mean flow generated at the port. These are the dominant terms, as port mean flow
Mach numbers are in general low for most engines. The linear time-invariant source model based
on Eqs. (28) and (30) was pursued for simplicity and to provide insight, however, the parent
model, Eqs. (21)–(24), can be used for more accurate computations.
The presence of a definite mean flow at a port, that is, an operating engine, is required for the

proposed source model to be meaningful. Therefore, the source impedance may not be given
values independently of the port mean flow, and since this rules out the case of infinite source
impedance, exhaust noise source mechanism may not be modelled as a pure volume velocity
source according to the present theory.
The rate of exhaust gas mass injection and the specific stagnation enthalpy of exhaust gas flow

are required as input for the present theory, the product of which being the predominant
parameter that determines the source pressure strength. These parameters can be predicted fairly
accurately by thermodynamic cycle simulation. To first approximation, cycle simulation can be
carried out by neglecting the effects of pressure and temperature fluctuations at exhaust and
intake ports. Thermodynamic cycle analysis can then be refined, if required, in an iterative scheme
in which the present theory is used, together with a heat transfer model, to predict the cyclic back-
pressure and temperature variations at the ports. Since the latter are in general dependent on the
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load, the source characteristics will also be load-dependent. Thus, the present theory can be used
to estimate the likely effects of load dependence on the source characteristics.
When the time-variant terms are taken into account, the source impedance becomes a matrix of

size equal to the number of harmonics considered in its representation. In general, the use of a
time-variant one-port source model is appropriate if the rate of gas mass injection has substantial
fluctuation, and only the dominant harmonics need to be considered in the representation of the
source impedance matrix.
Systematic procedures have been described for the calculation of one-port source characteristics

of an engine manifold for both time-invariant and time-variant one-port source models. These are
strictly applicable if the wave propagation in a manifold is time-invariant. Clearly, if the port
sources are time-variant, the equivalent source at the reference plane will also be time-variant,
even if the wave propagation in the manifold is modelled as being time-invariant.
The present theory is applicable, with almost no modification, to engine intake noise source

characterization, or to the discharge and suction noise source characterization of compressors.
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